Delayed Sampling and Automatic Rao–Blackwellization of Probabilistic Programs

Lawrence Murray¹, Daniel Lundén², Jan Kudlicka³, David Broman⁴, Thomas Schön¹
¹Uppsala University and ²KTH Royal Institute of Technology

1. Motivation
 - Probabilistic programming languages often perform inference using the bootstrap particle filter.
 - We would like to enable variance reduction techniques such as Rao–Blackwellization, locally-optimal proposals, and variable elimination.
 - Ideally, this should be automatic, without changes to program code.

2. Idea
 As they execute, probabilistic programs typically trigger checkpoints of two types:
 - sample to eagerly sample a random variable, and
 - observe to update a weight given some value for a random variable.

We instead use three types:
 - assume to initialize a random variable with some distribution,
 - value to instantiate such a random variable, and
 - observe to condition given some value for a random variable.

These three types facilitate delayed sampling. Between assume and value checkpoints, the distribution of a random variable can be updated at observe checkpoints, using analytical relationships such as conjugate priors and affine transformations.

The analytical relationships are maintained in a directed graph alongside the running program. Checkpoints trigger operations on this graph, such as insertion, marginalization, observation and sampling.

3. Benefits
 This can significantly reduce variance in marginal likelihood estimates (left, dark gray) versus a bootstrap particle filter (right, light gray).

 For a linear-nonlinear state-space model, delayed sampling marginalizes out the linear component of the state to automatically produce a Rao–Blackwellized particle filter.

 Similarly, for an epidemiological model, delayed sampling marginalises out the parameters, producing a random-weight or pseudo-marginal-style importance sampler with similar improvements.

4. Implementation
 Delayed sampling has been implemented in Anglican and Birch, a new universal probabilistic programming language.

5. Worked Example

Code	Checkpoint
 a ~ Gaussian(0.0, 1.0); | assume(a)
 b ~ Gaussian(a, 1.0); | assume(b)
 c ~ Gaussian(b, 1.0); | assume(c)
 d ~ Gaussian(c, 1.0); | assume(d)
 e ~ Gaussian(d, 1.0); | observe(e)
 print(c); | value(c)

 A number annotating a node indicates the number of observations on which it has been conditioned.

 Below, this rule is violated, and sampling of c does not benefit from the observation of e.

 The fix is to retracted the M-path before extending it to a node to be sampled or observed.