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1. Motivation
▶ Probabilistic programming languages often perform inference using
the bootstrap particle filter.

▶ We would like to enable variance reduction techniques such as
Rao–Blackwellization, locally-optimal proposals, and variable
elimination.

▶ Ideally, this should be automatic, without changes to program code.

2. Idea
As they execute, probabilistic programs typically trigger checkpoints of two
types:

▶ sample to eagerly sample a random variable, and
▶ observe to update a weight given some value for a random variable.

We instead use three types:
▶ assume to initialize a random variable with some distribution,
▶ value to instantiate such a random variable, and
▶ observe to condition given some value for a random variable.

These three types facilitate delayed sampling. Between assume and
value checkpoints, the distribution of a random variable can be updated
at observe checkpoints, using analytical relationships such as conjugate
priors and affine transformations.

The analytical relationships are maintained in a directed graph alongside the
running program. Checkpoints trigger operations on this graph, such as inser-
tion, marginalization, observation and sampling.
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3. Benefits
This can significantly reduce variance in marginal likelihood estimates (left,
dark gray) versus a bootstrap particle filter (right, light gray).
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For a linear-nonlinear state-space model, delayed sampling marginalizes
out the linear component of the state to automatically produce a Rao–
Blackwellized particle filter.

Similarly, for an epidemiological model, delayed sampling marginalises out
the parameters, producing a random-weight or pseudo-marginal-style impor-
tance sampler with similar improvements.

4. Implementation
Delayed sampling has been implemented in Anglican and Birch, a new
universal probabilistic programming language.

5. Worked Example
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Code Checkpoint
a ~ Gaussian(0.0, 1.0); assume(a)
b ~ Gaussian(a, 1.0); assume(b)
c ~ Gaussian(b, 1.0); assume(c)
d ~ Gaussian(b, 1.0); assume(d)
e ~ Gaussian(d, 1.0); observe(e)
print(c); value(c)
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A number annotating a node
indicates the number of obser-
vations on which it has been
conditioned.
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Marginalized nodesmust
form a single path, called
the M-path, extending
from the root.
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Below, this rule is vio-
lated, and sampling of c
does not benefit from the
observation of e.
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✔ The fix is to retract the
M-path before extend-
ing it to a node to be
sampled or observed.
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