
Delayed Sampling and Automatic
Rao–Blackwellization of Probabilistic Programs
Lawrence Murray1, Daniel Lundén2, Jan Kudlicka1, David Broman2, Thomas Schön1

1Uppsala University and 2KTH Royal Institute of Technology

1. Motivation
▶ Probabilistic programming languages often perform inference using
the bootstrap particle filter.

▶ We would like to enable variance reduction techniques such as
Rao–Blackwellization, locally-optimal proposals, and variable
elimination.

▶ Ideally, this should be automatic, without changes to program code.

2. Idea
As they execute, probabilistic programs typically trigger checkpoints of two
types:

▶ sample to eagerly sample a random variable, and
▶ observe to update a weight given some value for a random variable.

We instead use three types:
▶ assume to initialize a random variable with some distribution,
▶ value to instantiate such a random variable, and
▶ observe to condition given some value for a random variable.

These three types facilitate delayed sampling. Between assume and
value checkpoints, the distribution of a random variable can be updated
at observe checkpoints, using analytical relationships such as conjugate
priors and affine transformations.

The analytical relationships are maintained in a directed graph alongside the
running program. Checkpoints trigger operations on this graph, such as inser-
tion, marginalization, observation and sampling.

x

4

y[5]

4

y[1] y[2] y[3] y[4]

x[1]

1

x[2]

2

y[1]

x[3]

3

y[2]

x[4]

4

y[3]

x[5]

y[4] y[5]

x_n[1]

x_l[1]

1

x_l[2]

2

y_n[1]

y_l[1]

x_n[2]

x_l[3]

3

y_n[2]

y_l[2]

x_n[3]

x_l[4]

4

y_n[3]

y_l[3]

x_n[4]

x_l[5]

y_n[4]

y_l[4]

x_n[5]

y_l[5]

y_n[5]

3. Benefits
This can significantly reduce variance in marginal likelihood estimates (left,
dark gray) versus a bootstrap particle filter (right, light gray).

−59

−57

−55

−53

−51

64 128 256 512 1024 2048
N

lo
g(

Ẑ
)

−600

−550

−500

−450

−400

512 1024 2048 4096 8192 16384
N

lo
g(

Ẑ
)

For a linear-nonlinear state-space model, delayed sampling marginalizes
out the linear component of the state to automatically produce a Rao–
Blackwellized particle filter.

Similarly, for an epidemiological model, delayed sampling marginalises out
the parameters, producing a random-weight or pseudo-marginal-style impor-
tance sampler with similar improvements.

4. Implementation
Delayed sampling has been implemented in Anglican and Birch, a new
universal probabilistic programming language.

5. Worked Example

1.

a b

c

d e

Code Checkpoint
a ~ Gaussian(0.0, 1.0); assume(a)
b ~ Gaussian(a, 1.0); assume(b)
c ~ Gaussian(b, 1.0); assume(c)
d ~ Gaussian(b, 1.0); assume(d)
e ~ Gaussian(d, 1.0); observe(e)
print(c); value(c)

2.

a b

c

d e

initialized

marginalized

realized

3.

a b

c

d e

A number annotating a node
indicates the number of obser-
vations on which it has been
conditioned.

4.

a b

c

d e

5.

a b

c

d e

Marginalized nodesmust
form a single path, called
the M-path, extending
from the root.

6.

a b

c

d

1

e

Below, this rule is vio-
lated, and sampling of c
does not benefit from the
observation of e.

7.

a b

1

c

d e

✔ 
a b

c

d

1

e

✘

8.

a b

1

c

1

d e

✔ 
a b d

1

c

e

✘

9.

a b

1

c

d e

✔ The fix is to retract the
M-path before extend-
ing it to a node to be
sampled or observed.

www.birch-lang.org


